
GITK in comparison with other adaptive interface toolkits

Dipl. Inf. Stefan Kost (FH)

HTWK Leipzig, Postfach 30 11 66, D−04251 Leipzig, Germany

kost@imn.htwk−leipzig.de

Abstract: Although a few adaptive toolkits already exist, with GITK (’Generalised Interface ToolKit’ )
another solution appears. This young solution targets a different range of applications. Research has shown
that the complexity the other toolkits supply is not always needed but hinders cross media−domain adaption.
GITK has only a few requirements, is light−weight and thus can generate interfaces of a great variety.

Keywords: ’generalised interfaces’ , ’adaptive toolkits’ , ’multi−dimensional adaption’ , ’multi modal
interfaces’



1 Motivation 
Many of currently available adaptive interface
toolkits are specialised to provide user interfaces
for single media domain. The reason for it is, that
the toolkit wants to use as much features as possible
for information representation available in the
chosen domain. Complex forms of presentation are
unfortunately difficult to replace with equivalent
ones of other media domains − sometimes they
even do not exist. Other approaches have heavy
technical requirements and are therefore not well
suited to mobile devices.
Avoiding the above mentioned problems, requires
an architecture differing in many details. In my
work I develop a technology called ’Generalised
Interface ToolKit’ (GITK). In contrast to the former
approaches, this solution strives to provide a toolkit
for applications, which can live with lack of
interface objects for complex data presentation. The
benefit they get in turn is, that GITK can make
those applications very adaptable. Possible
adaptions are ranging from text based interfaces
with speech output and braille line support to aid
the blind, over common graphical interfaces, up to
interfaces using a telephone line with speech i/o
and touchtones. The architecture of the GITK
system would even allow dynamic construction of
system interfaces (Interfaces to remote control an
application (e.g. via a REXX), by another
application).

2 Introduction

2.1 Adaptive interface toolkits
Adaptive interface toolkits equip an application
with an interface at run−time. They are able to
change certain aspects of the interface (adaption),
as the user or the current environment requires it. In
my work I subdivide adaption into personal
(personal preferences, education, sensorical and
motorical capabilities), cultural (language, locale)
and technological (i/o hardware) adaption and refer
to it as multi−dimensional adaption.
Many existing solutions such as ’User Interface
Markup Language’ (UIML) (UIML, 2002) or
’eXtensible Userinterface Language’ (XUL)
(Dakin, 2003) are designed to generate visually
oriented interfaces. With this limitation they can
avoid many difficulties, such as transforming
between several media (e.g. Text to Speech). My
research has shown that a large number of
application do not really need those features to
work. A large quantity of applications, which are in
daily use for communication or organisation are
mainly using textual information. Text can easily
be represented in various media−domains such as
graphics or audio and can be entered with a great
variety of hardware.
This leads to the idea of restricting the complexity
of available specialised presentations in favour of
the better transformability.

2.2 The GITK approach

Like other approaches GITK uses an ’eXtensible
Markup Language’ (XML) for interface description
called ’Generalised Interface Markup Language’
(GIML). One of the most important considerations
made when designing GIML, was the strict
separation between functional and presentational
description of an interface. The application logic
remains in the application itself. Functional
description is provided as XML (GIML) files from
the application, but presentational settings are
derived from ’eXtensible Stylesheet Language’
(XSL) files, which come from user and system
profiles. These information are merged with the
functional descriptions by using ’eXtensible
Stylesheet Language Transformations’ (XSLT) to
form a final interface description. The profile data
could come directly from a file−system or from a
remote profile server.
A second corner stone is the modular architecture
of GITK. The solution consists of several layers and
a plugin interface for independent interface
rendering modules. The plugins allow easy
extensibility. New rendering modules can be
developed separately and added at anytime.
The open architecture makes it an ideal testbed for
upcoming developments in the field of ’Human
Computer Interaction’ (HCI). Applications ported
to use GITK can immediately tried with new
technology or new presentation styles, without that
they need to be changed.

3 Current status
The software is still under heavy development,
although several demonstrations do already exists.
Renderers for text−based interfaces as well as one
for a graphical interface are written and ready to be
demonstrated.
The GIML has been designed, after exploring the
needs of the targeted applications, as well as
capabilities and requirements of interfaces.
Currently one or two students will start to write
rendering modules to see if the term ’gerneralised’
holds.
Everyone can participate in the development on
http://gitk.sf.net.

References

UIML (2002), UIML − User Interface Markup Language,
http://www.uiml.org/intro/index.html, Virginia
Tech Corporate Research Center. 

Neil Deakin. (14.Apr.2003), XUL Tutorial,
http://www.xulplanet.com/tutorials/xultu/intro.html
, http://www.xulplanet.com.


