
Dynamically generated multi-modal application interfaces
- position paper -

Stefan Kost
TU Dresden, HTWK Leipzig

st kost@gmx.de

ABSTRACT
This work approaches dynamic multi-modal application in-
terfaces from a new point of view. The ongoing diversifica-
tion of the user base and technology lays the foundation for
the need of an holistic adaption infrastructure. Only design-
ing individual adaption methods is not sufficient anymore.
Providing such an infrastructure along with an open refer-
ence implementation is the objective of the Generalized In-
terface ToolKit (GITK) project. The software can generate,
adapt and exchange interfaces at runtime. It works on var-
ious platforms and comes with several interface renderers.
The solution is based on XML technology and defines an
own markup language called Generalized Interface Markup
Language (GIML).

Author Keywords
adaptive systems, adaptable systems, dynamic multi-modal
application interfaces, UIMS

INTRODUCTION
In the last years a new development took place in our world.
This work refers to it asdiversification. It shows as two
separate effects:

• ”technification” of all areas in life
Humans are outnumbered by technical devices already or
real soon! Already these days it is nearly unavoidable to
get in touch with technology. Therefore technology must
be made accessible to everyone, everywhere and at every
time not just physically.

• ”computerization” of devices
Many technical devices are more often multi-purpose ap-
pliance like computers. They have facilities for interaction
and share basic common tasks.

So the challenge is to enable all the technology to all the
people. This leads to a multi-dimensional adaption prob-
lem. The presumption that can be made here is, that software
needs to adapt much more than it already does. Adaptation
needs to work in a media-neutral fashion. It should be un-

derstood as a continuous process and not as something that
happens once.

Interaction
This work deals with interfaces (see section Interfaces later
in this article). Interfaces exist for the purpose of allowing
interaction.

DEFINITION 0.1 (INTERACTION). Interaction is the pro-
cess of two or more systems exchanging data to perform a
task.

Participants of an interaction are calledinteraction partners
or interactors. An interactor is a system with a variety of
input and output channels. Each of these channels can sub-
mit data or stimuli of a certain type (like e.g. sound , visu-
als or touch). These submissions are subject to interpreta-
tion by the receiving system. The sum of the bandwidth

Interaction
Partner

Interaction
Partner

Interaction Channel Input Port

Output Port

Figure 1: undisturbed interaction scenario

of the interaction channels defines thepotential interaction
capabilitiesof the system. These potential capabilities can
only be used in the optimal case, where no obstacles hinder
the interaction. The environment has such a blocking effect.
Therefore theeffective interaction capabilitiesare what re-
mains after the varying blocking effect of the environment
has been taken into account. [Stary, 1996, Dix et al., 1997]
It is obvious that the chances for successfully establishing

enough links for an efficient interaction are not very good in
the case shown in figure2.
This work focuses on human-computer interaction and computer-
computer interaction. To assure effective interaction, adap-
tion is needed. For human-computer interaction it is desir-
able that the computer adapts to the needs of the human in-
teraction partner. Using adaptive interfaces in the fields of



Interaction
Partner

User

Interaction
Partner

Application

Interaction Channel Input Port

Output Port

Environ-
ment

Blocked Channel

Available Channel

Figure 2: interaction scenario with environmental influence

computer-computer interaction allows to easily reuse an ap-
plication in a different environment.

Adaption
Adaption is a key concept in this work, but also in the real
world. Therefore a definition for the context of this work is
required.

DEFINITION 0.2 (ADAPTION). Adaption is the process
of changing an object so that it complies to given require-
ments.

One conclusion from this definition is that the object needs
to be adaptable at all. It needs to offer different modes of
operation that can be matched with the requirements. There
are two kinds of adaption:

• passive adaptionor adaptable system= system will be
manually adapted by an external entity

• active adaption or adaptive system= system adapts it-
self automatically

[Fink et al., 1996]
Adapting an object needs knowledge about what changes are
necessary for a desired effect. The overall knowledge re-
garding to adaption can be broken down on the base of single
aspects.

DEFINITION 0.3 (ADAPTION METHOD). An adaption re-
garding to one single aspect of the adaption object is the
application of an adaption method. The method describes
which changes are needed for specific requirements.

The design of a good adaption method for human users re-
quires knowledge from fields like cognitive science and psy-
chology.
As presumed earlier in this article software needs to adapt.
More precisely the interfaces are theobjectsto be adapted.
The adaption process is controlled by parameters, theadap-
tion requirements. In the case of this work these require-
ments areadaption profilesand consist ofenvironment pro-
filesanduser profiles.

DEFINITION 0.4 (USER PROFILE). The user profile de-
scribes the adaption requirements of the user and consists of

the following parts:

• the interaction capabilitiesof the user as a communica-
tion partner. Interaction capabilities are a compound of
the sensorical and motorical capabilities.

• the interests and preferencesof the user relating to the
style of the interaction.

• the knowledge and competenceof the user regarding to
the task.

Defining an individual user profile is calleduser modeling.
[Fink et al., 1997]

DEFINITION 0.5 (ENVIRONMENT PROFILE). The envi-
ronment profile describes a filter that applies to the capabil-
ities part of the user profile. It temporarily restricts or even
blocks certain interaction capabilities of the user.

While the user profile can be seen as an object with nearly
static properties, the environmental profile needs to be con-
sidered as highly dynamic.
To adapt an interface usually multiple adaption methods need
to be applied. It sounds sensible to define anadaption in-
frastructurethat handles the application of adaption meth-
ods. Designing such an infrastructure requires engineering
skills from the area of computer science. Therefore the sepa-
ration into adaption methods and adaption infrastructure re-
flects the relation to different areas in science.
Figure3 graphically shows the relation of the previously de-
fined terms for the scenario of human-computer interaction.
Finally a short summary can be given:

Interaction Partner
Application
Adaption Object

Interaction Partner
User

Environment

Aspect to adaptenvironmental Loadpotential Capabillity

Adaption
Method

Adaption
Method

Adaption
Infrastructure

perform Adaption

control Adaption

stpada

setucexe

Adaption
Profile

observes

Figure 3: schematics of adaption and involved components

• the users’ potential capabilities plus the current environ-
ment form the adaption profile

• the adaption profile controls the adaption process

• the adaption infrastructure provides means to read the pro-
file and to choose and execute the respective adaption method

• the adaption method performs the adaption of one aspect
of the application interface according to the requirements
given by the adaption profile

[Stary, 1996, Dix et al., 1997]



Interfaces
DEFINITION 0.6 (INTERFACE). An interface provides

well defined access to functionality of an object from out-
side. It appears as a layer between two parties and aids
their interaction.

In [Phanouriou, 2000b] an interface is separated into four
aspects:

• structure: the organization of interface objects

• content: resources used in the interfaces such as label
texts and shortcut metaphors

• style: the presentation of interface objects

• behavior: defines the action to be performed on interac-
tion with the interface objects

The application needs to provide structure, behavior and con-
tent. The presentation and choice of the content (e.g. for
i18n) is dependent on the modality of the interface and the
user profile. Therefore these aspects will be chosen by the
adaption infrastructure. Finally style is an aspect that should
be provided and handled by the adaption infrastructure.

Interface models
In the past various models for decoupled interface architec-
tures have been suggested. A general criticism on models
such as Seeheim, Arch, MVC and PAC is, that they aim to
model adaptive systems, but do not represent the adaption
process as such. These models only decouple components,
but lack a definition of how adaption is driven (how to cou-
ple the right component-instances at run-time). Seeheim and
Arch span a series of components between user and applica-
tion, neglecting that there is an environmental influence af-
fecting the interaction and that a user might carry out several
tasks synchronously. In the past, when the models such as
Seeheim and Arch have been defined, these two effects were
hard to take into account for technical reasons or were less
important. This has changed in the present. [Pfaff, 1985,
various contributors, 1992]

Existing approaches
The goals of this work are similar to those of other projects.
A big share of them either became dormant (AUIML) or
seemingly have been discontinued (XIML). Another group
of projects focuses on adaptive hypermedia applications. These
projects usually develop adaption methods for their purpose
and then an infrastructure to drive them. Furthermore there
are solutions such a UIML and XUL which are active. XUL
focuses on graphical interfaces only. It mainly serves as a
operation system portability layer. Interfaces generated by
UIML and XUL can not change their modality at runtime.
With UIML the developer needs to specify all target inter-
face variants that should be available later. Both languages
use XML as a ”input file-format”. [Phanouriou, 2000a, Hy-
att, 2000]. Finally some projects are quite similar like W3C
XForms, but started in parallel or later as this work. XForms
maintains separate XML documents for content and inter-
face [Dubinko et al., 2003]. All approaches mentioned above
have in common that they do not aim to provide a system,

where interfaces can be adapted or even exchanged at run-
time.

Aim of this the GITK project
The previous sections motivated that it is useful to distin-
guish between theadaption infrastructureandadaption meth-
ods. They further showed that an adaption has a multi-dimen-
sional nature. Therefore a holistic approach to adaption is
needed. Applications using this technology would then be
adaptable, as they will use a pure functional interface de-
scription as an input and leave the generation of a concrete
interface to the system.
In parallel more research is required in user modeling to de-
fine rich user profiles that can control the adaption process.
This would turn the adaptable systems into adaptive systems.
This work focuses on providing a fundamental adaption in-
frastructure, with a strong decoupling of application logic
and interface presentation. On top of that a limited num-
ber of adaption methods will be implemented as a proof-of-
concept. However it is not the objective of this project to
develop new adaption methods, nor evaluating them.

THESIS
This work will show, that:

THESIS 0.1. By limiting the presentational complexity a
much greater universality can be achieved.

THESIS 0.2. There is no reason for adaptive solutions to
mainly concentrate on graphical presentation.

THESIS 0.3. It is possible and even desirable to separate
style related description from functional interface descrip-
tion.

THESIS 0.4. An interface can be generated, without the
application needing to provide adaption profiles for differ-
ent targets. In other words: even adaption methods can be
generalized.

THESIS 0.5. It is possible and preferable to always have
a default behavior, that can be overridden by adaption, in-
stead of only relying on the adaption.

THESIS 0.6. A solution can be based on many standard-
ized and well established technologies. In fact it can glue
many specific solutions together, which already exist.

THESIS 0.7. Beside humans an application can be an end-
user as well and therewith benefit from an adaptive solution.

THESIS 0.8. Adaptive technology is necessary for every-
one and not just for minorities (like elderly or disabled peo-
ple).

SOLUTION
The solution presented in this work is called Generalized In-
terface ToolKit (GITK) and consists of three parts:

• an architecture related to the arch model that fits with the
formerly defined adaption structure



• a domain independent markup-language that is called Gen-
eralized Interface Markup Language (GIML)

• a domain independent interface object hierarchy that is
based on a canonical interface object naming scheme

Libgitk

API

Core

Wrapper

Transform.
Plugins

Application

Rendering
Plugins

PerlJavaC++

PerlJavaC++C

Defs PrefsI18n

Gtk+
Graphics

Mouse/Keyb.

Text
Text

Keyboard

Web
Graphics

Mouse/Keyb.

Domain

Figure 4: GITK architecture

The architecture part as shown in figure4 has been imple-
mented as a multi-layered software system. As a major dif-
ference to approaches like UIML, GITK not requires domain
specific adaption of interfaces. The required domain spe-
cific knowledge is captured in the design of the rendering
component. This sounds like a more practical approach as
the application developer usually not has the knowledge and
resources to cover all possible target domains. When design-
ing a rendering component specialists can be included in the
development team. The architecture presented here, can be
extended, to allow applications to provide hints to the do-
main specific adaption on demand. This would be necessary
when a generic solution is not enough.
A second key difference is that the XML interface descrip-
tion is used as an active dialog model. That means that the
adaption processing heavily relies on XML technology such
as XSLT, XPath and XML Namespaces. The advantage of
this is, that there is no discontinuity in the use of technology
that is processing the model in the transformation pipeline
(see figure5). The pipeline itself is maintained by the core
library. This includes construction of a pipeline for a spe-
cific renderer, executing it and synchronizing both ends. At
run-time the application feeds a dialog description into the
pipeline. This serves as a structure onto which all variable
aspects of an interface are overlaid. Then the core library ini-
tially applies all transformations to build the dialog descrip-
tion that the renderer understands. Each step of the pipeline
adds or reconfigures aspects of the interface towards the re-

Profile

XSL

Rendering Plugin

Libgitk

Domain independent

Domain dependent

Application

Profile

XSL

Dialog
description

GIML (XML)

Profile

XSL

Profile

XSL

Common
Transformation

Presentational
Transformation

Dialog
Interpreter

Profile

XSL

Profile

XSL

Figure 5: GITK processing pipeline

quirements of the user. When the user works with the in-
terface, all state changes such as navigation and data-entry
are written back to the XML dialog model by the renderer
(at the renderers end of the pipeline) and are synchronized
with the applications end of the pipeline by the core library.
This mechanism decouples the application and the interface
instance even at runtime.
GIML is defined by a document type definition (DTD). This
is currently being exchanged with W3C Schema. The markup
language uses namespaces to separate the various aspects of
dialogs (see section Interfaces) and namespaces do not work
well with DTDs.
All interface objects are identified by a type. The type hier-
archy uses only functional names. Thereby a ”push button”
becomes an ”action”, as when used e.g. in the voice domain
a ”push button” is not a meaningful concept. This abstrac-
tion layer allows each renderer to associate a domain depen-
dent representation with the domain independent name.
Figure6 shows an example dialog definition. One can see
that the GIML is relative terse. It is important to note that
the example only shows the input document. The application
adds dynamic aspects like behavior at run-time by using the
ore library API. The GITK software package comes with an
introspection mechanism to look inside the XML pipeline at
run-time.
This work comes with a free reference implementation. It is

available as an active open-source project athttp://gitk.source-
forge.net. The system is light-weight and portable. It is de-
veloped mostly in C and requires only a few libraries like
glib and libxml2. It has been successfully tested on several
Unix/Linux and Windows systems. The project consists of
a core package, various renderers (text, gtk, opengl, phone,
...) and a set of examples. The core package comes with a

http://gitk.sourceforge.net
http://gitk.sourceforge.net


<?xml ve rs i on=” 1 .0 ” encod ing =”UTF−8” ?>
<!DOCTYPE giml SYSTEM ” h t t p : / / g i t k . s o u r c e f o r g e . n e t / g iml . d td ”>
<!−− $ I d : g i t k H e l l o U s e r m a i n . xml . in , v 1 . 7 2 0 0 4 / 0 4 / 0 1 1 2: 17 :27 e n s o n i c Exp$
∗ @f i l e g i t k H e l l o U s e r m a i n . xml
∗ @author S t e f a n Kost<enson ic@users. s f . net>
∗ @date Thu Jan1 7 1 1: 22 :38 2002
∗
∗ @brie f main d i a l o g f o r g i t k H e l l o U s e r. c
∗ @ingroup g i t k e x a m p l e s
∗
−−>
<giml xmlns=” h t t p : / / g i t k . s o u r c e f o r g e . n e t / ”

xmlns :dc =” h t t p : / / p u r l . o rg / dc / e l e men ts / 1 . 1 / ”
xm lns : i 18n =” h t t p : / / apache . org / cocoon / i18n / 2 . 0 ”>

<d ia l og>
<meta>

<d c : t i t l e><i 1 8 n : t e x t>query u s e r i d e n t i t y</ i 1 8 n : t e x t></ d c : t i t l e>
</meta>
<d i a l o g w i d g e t s>

<d i a l o g w i d g e t i d =”Okay”/>
<d i a l o g w i d g e t i d =” Cance l ”/>

</d i a l o g w i d g e t s>
<widgetgroup>

<l a b e l><i 1 8 n : t e x t>i d e n t i t y</ i 1 8 n : t e x t></ l a b e l>
<widge t i d =”UserName” t ype =” c h a r a c t e r i n p u ta l p h a b e t i c ”>

<l a b e l><i 1 8 n : t e x t>u s e r name</ i 1 8 n : t e x t></ l a b e l>
<d i s a b l e d>t r u e</d i s a b l e d>

</w idget>
<widge t i d =” Sex ” t ype =” o p t i o n c h o i c es i n g l e c o m p a c t ”>

<l a b e l><i 1 8 n : t e x t>sex</ i 1 8 n : t e x t></ l a b e l>
<o p t i o n s>

<op t ion><i 1 8 n : t e x t>male</ i 1 8 n : t e x t></op t i on>
<op t ion><i 1 8 n : t e x t>f ema le</ i 1 8 n : t e x t></op t i on>

</o p t i o n s>
</w idget>

</w idgetgroup>
</d i a l og>

</giml>

Figure 6: GIML dialog example

browser based management console, that allows to inspect
the internals of the system and to simulate changes in the
adaption requirements. [Kost, 2003]

CONCLUSION
The article started with a theoretical foundation. The terms
related to interaction and adaption have been precisely de-
fined. The problem analysis showed that the adaption prob-
lem has a multi-dimensional nature. This finding even more
justified the separate exploration ofadaption infrastructure
andadaption methods. Then the objective of adaption - the
interface - has been covered.
In the previous section a new adaption infrastructure that is
able to integrate all kinds of adaption methods has been in-
troduced. It is important to note that not only the XML lan-
guage as such solves the problem of an abstract interface
architecture. The interplay of language and architecture is
what provides a flexible system. GITK reaches this goal
by its pipeline concept and the intensive use of XML tech-
nology. The presented solution meets the requirements to
design a holistic approach towards adaption. The included
examples show the adaptability and the partial adaptiveness.
The choice of examples outlines the kind of applications the
GITK approach is useful for - administration tools, infor-
mation management (CMS,PIM) software - all applications
where a highly available clean interface matters more than a
polished interfaces presentation. A second target group are
rapid prototyping systems, as for these GITK can act as a
interface prototype run-time environment. It would be in-
teresting to research if a GITK interface description can be
generated from an UMLi (Unified Modeling Language for
Interactive Applications) model or even from a XML schema
definition [Norman W. Paton and Paulo Pinheiro da Silva,
2002, Sperberg-McQueen and Thompson, 2004].
The current state of the project mainly affects software de-
velopment and not yet the user, as it focuses on the adaption
infrastructure and not the adaption methods.

FUTURE
To turn adaptable applications into adaptive systemsuser
profilesare needed. User modeling and the ongoing tech-
nological development contribute towards that. Furthermore
future devices will have moresensorsto read from the envi-
ronment.
Integrating such dynamic profiles and related adaption meth-
ods into the GITK infrastructure will extend the solution to-
wards more kinds of applications.

REFERENCES
Dix, A. J., Finlay, K. E., Abowd, G. D., and Beale, R.
(1997).Human-Computer Interaction. Prentice Hall,
Pearson Education Limmited.

Dubinko, M., Klotz, L. L., Merrick, R., and Raman, T. V.
(14 October 2003). Xforms 1.0.
http://www.w3.org/TR/xforms/ ,
http://www.w3.org/MarkUp/Forms/.

Fink, J., Kobsa, A., and Nill, A. (1996). Useroriented
adaptivity and adaptability in the avanti project.
http://citeseer.ist.psu.edu/fink96useroriented.html.

Fink, J., Kobsa, A., and Nill, A. (1997). Adaptable and
adaptive information access for all users, including the
disabled and the elderly. InProceedings of the Sixth
International Conference UM97. Springer Verlag, Wien,
New York.

Hyatt, D. (30 March 2000). The xptoolkit architecture.
http://www.mozilla.org/xpfe/xptoolkit/index.html.

Kost, S. (2000-2003). Gitk - generalized interface toolkit.
http://gitk.sf.net.

Norman W. Paton and Paulo Pinheiro da Silva (February
27, 2002). Umli - unified modeling language for
interactive applications.
http://www.cs.man.ac.uk/img/umli/index.html.

Pfaff, G. E. (1985). User interface management systems.
In EurographicSeminars. Springer Verlag, Berlin
Heidelberg New York Tokyo.

Phanouriou, C. (1999,2000a). Uiml - user interface
markup language. http://uiml.org/.

Phanouriou, C. (2000b).UIML: A Device-Independent
User Interface Markup Language. PhD thesis, Virginia
Polytechnic Institute and State University.

Sperberg-McQueen, C. M. and Thompson, H. (17 Mar
2004). Xml schema. http://www.w3c.org/XML/Schema.

Stary, C. (1996).Interaktive Systeme. Friedr. Vieweg &
Sohn Verlagsgesellschaft mbH.

various contributors (1992). A metamodel for the runtime
architecture of an interactive system.UIMS Tool
Developers Workshop 1992: In SIGCHI Bulletin. 24(1).
pp 32-37.


	Introduction
	Interaction
	Adaption
	Interfaces
	Interface models
	Existing approaches
	Aim of this the GITK project

	Thesis
	Solution
	Conclusion
	Future
	REFERENCES 

